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Nucleosynthesis Without Computer

V. Mukhanov1

Complete analytical derivation of the time evolution and final abundances of the light el-
ements (up to 7Be) formed in the big-bang nucleosynthesis is presented. This highlights
an interesting physics taking place during the formation of light elements in the early
universe.
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1. INTRODUCTION

The most occurrent chemical element in the universe is hydrogen. It con-
stitutes nearly three quarter of all baryonic matter. The next mostly wide spread
element Helium-4, constitutes about 25%. The other light elements and the metals
occur very rare. Very simple arguments lead to the conclusion that it is very un-
likely that 4He, deuterium (D), and other light elements could be burned in the stars
(see, for instance, Kolb and Turner (1993), Weinberg (1972)). Therefore the only
sensible explanation of their abundance is that they were produced in the very early
universe. It is clear that the essential amount of the helium could not be formed
before the temperature dropped below its binding energy ∼28 MeV and one can
expect that the Big-Bang nucleosynthesis (BBN) took place when the tempera-
ture was not very different from ∼MeV, that is, somewhere in between seconds
and minutes after the Big-Bang. Therefore BBN, being based on the well under-
stood physics, offers the possibility of reliable probe of the early universe (see
for instance, Kolb and Turner (1993), Malaney and Mathews (1993), Olive et al.
(2000), Sarkar (1996), Schramm and Turner (1998), Walker et al. (1991), Wein-
berg (1972) and references cited therein). The amount of the produced elements
depend on the basic cosmological parameters and is very sensitive to the baryon
density. The measured abundances combined with the CMB temperature fluctua-
tion measurements provide us a unique opportunity to verify the reliability of the
“standard model” of the universe evolution (Bennett et al., 2003; Fields and Sarkar,
2002).

1 LMU, Sektion Physik, Theresienstr. 37, 80333 Muenchen, Germany; e-mail:mukhanov@theorie.
phsik.uni-muenchen.de.
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The element abundances, are usually calculated using computer codes (for
instance, publically available (www-thphys.physics.ox.ac.uk/users/SubirSarkar/
bbn.htlm) Wagoner code (Kawano, 1992; Wagoner, 1973; Wagoner et al., 1967)
and the abundances are presented as the function of the baryon density. To under-
stand the dependence of the element abundances on the cosmological parameters
the semianalytical and analytical description of BBN proved to be very useful
(Berstein et al., 1989; Esmailzadeh et al., 1991). In this paper I develop simple
quasi-equilibrium analytical approach which allows to derive the final abundances
of all light elements up to Berilium-7 without using any computer codes. The ac-
curacy of the results is very good for 4He, good for D, and reasonably good for the
other elements. I obtain analytical (not fitting) formulae describing the dependence
of the abundances on the cosmological parameters and trace the time evolution
of the element abundances before their freeze-out. This highlights an interesting
and reach physics taking place during nucleosynthesis and allows to understand
the physical reasons for the dependence of the abundances on parameters without
practicing with computer codes.

2. FREEZE-OUT

The amount of helium produced depends on the availability of the neutrons
at the time when the helium is formed. In turn, the neutron concentration is deter-
mined by the weak interactions which ensure the chemical equilibrium between
the neutrons and protons at very early time. The weak interactions become ineffi-
cient when the temperature drops below few MeV. Around this time the neutrons
chemically decouple from the protons and after that the ratio of their concentra-
tions “freeze out.”2 The nuclear reactions take place after that. Therefore, first we
need to calculate the “freeze out” concentration of the neutrons.

The main processes responsible for the chemical equilibrium between protons
and neutrons in the early universe are the weak interaction reactions:

n + ν � p + e−, n + e+ � p + ν̄ (1)

Here ν always means the electron-neutrino. To calculate the rate of these reactions
one can use the Fermi theory according to which the matrix element characterizing
4-fermion interaction (1) is equal:

|M|2 = 16
(
1 + 3g2

A

)
G2

F(pn · pν)(pp · pe), (2)

where GF = παw/
√

2M2
W 
 1.17 × 10−5/GeV2 is the Fermi coupling cons-

tant, gA 
 1.26 is the correction to the axial vector “weak charge” of the

2 The above statement is, of course, literally true only if one neglects the neutron decay.
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nucleon,3 and (pi · p j ) are the scalar products of appropriate 4-momenta enter-
ing the vertex.4 Considering the process a + b → c + d of type (1), we get the
following expression for the differential cross-section of this interaction:

dσab

d�
= 1

(8π )2

|M|2
(pa + pb)2

(
(pc · pd )2 − m2

cm2
d

(pa · pb)2 − m2
am2

b

)1/2

, (3)

where the integration over the phase space of c, d-particles has been performed.
This expression is manifestly Lorentz-invariant and can be used in any coordinate
frame. Note, that the 4-momenta of the produced particles are related to the 4-
momenta of the colliding particles via the conservation law: pc + pd = pa + pb.
Let us now consider the particular reaction n + ν → p + e− at the temperatures
around few MeV and below. In such a case the nucleons are nonrelativistic;
hence

(pn + pν)2 
 m2
n; (pn · pν) = m pεν ;√

(pp · pe)2 − m2
pm2

e 
 m pεe

√
1 − (me/εe)2 = m pεeve (4)

where εν is the energy of the incoming neutrino and εe 
 εν + Q is the energy of
the outgoing electron. The energy Q = 1.293 MeV, is released when the neutron
“is converted” into proton. The formula (3) is directly applicable only in empty
space. However, at the temperatures above 0.5 MeV there still present many e±-
pairs and the possible final states for the electron are partially occupied. Because
of the Pauli exclusion principle it reduces the appropriate cross-section by the
factor (1 − nεe ) = (1 + exp(−εe/T ))−1. Taking this into account and substituting
(4) into (2), (3) one gets:

σnν 
 1 + 3g2
A

π
G2

Fε
2
e ve(1 + exp(−εe/T ))−1, (5)

where we have neglected the chemical potential of the electrons. Note that the
concentration of the nucleons is negligible compared to the concentration of the
light particles at this time and therefore the spectrum of the light particles is
practically not influenced by the above reactions. The nν-interactions taking place
within time interval 
t in a given commoving volume, containing Nn neutrons,
reduce their total number by amount


Nn = −
( ∑

εν

σnνnενvν
gεν

)
Nn
t , (6)

3 This correction accounts for the possibility that the gluons binding quarks inside the nucleon can split
into quark–antiquark pairs, which could give nonvanishing contribution to the weak coupling.

4 The Fermi constant can be determined with a very good accuracy measuring the life time of the muon,
while gA can be found only if one considers the interaction involving the nucleons.
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where nεν
= (1 + exp(−εν/Tν))−1, vν = 1 is the speed of the neutrinos, and 
gεν

is the phase volume element:


gεν
= 1

2π2

∫ εν+
εν

v
|p|2d|p| 
 1

2π2

√(
ε2
ν − m2

)
εν
εν.

Introducing the relative concentration of the neutrons

Xn = Nn

Nn + Np
= nn

nn + n p
, (7)

and substituting (5) in (6) we finally obtain the following expression for the rate
of change of the neutron concentration due to nν-processes(

d Xn

dt

)
nν

= −λnν Xn = −1 + 3g2
A

2π3
G2

F Q5 J (1; ∞)Xn , (8)

where

J (1; ∞) =
∫ ∞

1
dqq2(q − 1)2

(
1 − (me/Q)2

q2

)1/2 [
1 + e

Q
Tν

(q−1)
]−1 [

1 + e− Q
T q

]−1
,

(9)

and we have introduced the integration variable q = (εν/Q) + 1 = εe/Q. These
expressions are given in Weinberg (1972). If we neglect the last multiplier into the
integrand5 and, take into account q > 1 and (me/Q)2 
 0.15, expand the square
root keeping only first two terms, the obtained integrals can be exactly calculated
and the result is

J (1; ∞) 
 45ζ (5)

2
y5 + 7π4

60
y4 + 3ζ (3)

2

(
1 − 1

2

(
me

Q

)2
)

y3, (10)

where y = Tν/Q. It is quite remarkable that this approximate expression repro-
duces the exact result with very high accuracy at all temperatures. For instance, at
y > 1 the accuracy is about 2%, improving to 1% and much better for y < 1.

It is not difficult to understand why it is the case. Actually at low temperatures
(y � 1) this should be so since exp (−Q/T ) � 1.6 On the other hand in the limit
of very high temperatures (y � 1) the integral (9) can be very well approximated
if one neglects (me/Q)- and (Q/Tν)-terms; the result is

J (1; ∞) 
 7π4

30
y5 at y � 1. (11)

Comparing this with the first term in (10), which obviously dominates in this
limit, we see that they coincide within 3%-accuracy since (45ζ (5)/2 : (7π4/30) =
1.027. One can check numerically that in the intermediate range the accuracy of

5 This means that one ignores the Pauli’s exclusion principle.
6 We remind that before e±-annihilation T = Tν and after that T = 1.4Tν .
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the approximate expression (10) is better than 2%; for instance, at y = 0.7 it is
about 1%.

Substituting (10) together with the numerical values of GF, Q, expressed first
in the Planck’s units, into (8) and then returning back to the usual units ([λ] = s−1)
we infer that

λnν 
 1.63y3(y + 0.25)2 s−1. (12)

In this last expression further simplifications were made. However, the reader can
check himself that at all temperatures, Tν ≥ 0.2 MeV, its accuracy is never worse
than 2–3%. Taking into account the experimental uncertainties in gA this accuracy
looks very satisfactory.

Similarly, we find that the rate of the reaction n + e+ → p + ν̄ is equal to

λne = 1 + 3g2
A

2π3
G2

F Q5 J

(
−∞; −me

Q

)
, (13)

where J is the integral defined in (9) with the limits of integration from −∞ to
−(me/Q). If Tν = T and T > me, then λne 
 λnν .

The rates of the inverse reactions: pe− → nν and pν̄ → ne+ are related to
the rate of the direct reactions (at Tν = T ) as

λpe = exp(−Q/T )λnν , λpν = exp(−Q/T )λne, (14)

“Freeze-out”: The inverse reactions lead to the increase of the neutron con-
centration with the rate λp→n X p; hence we can write the following balance equa-
tion for Xn:

dXn

dt
= −λn→p Xn + λp→n X p = −λn→p

(
1 + e− Q

T
)(

Xn − X eq
n

)
, (15)

where λn→p = λne + λnν is the total rate of the direct reactions (1) and X eq
n = (1 +

exp(Q/T ))−1. In deriving (15) I took into account that the proton concentration
X p = 1 − Xn and used the relation (14) assuming that Tν = T .

The exact solution of this linear differential equation, with the initial condition
Xn → X eq

n as t → 0, can be written in the following form

Xn(t) = X eq
n (t) −

∫ t

0
d̃ t̃ Ẋ eq

n exp

(
−

∫ t

t̃
λn→p

(
1 + e− Q

T
)

dt

)
, (16)

where dot denotes the derivative with respect to time. At small t the second term
in this equation, characterizing the deviations from the equilibrium, is negligible
compared to the first one. Integrating by parts, one gets that in this limit the solution
(16) can be rewritten as an asymptotic series in terms of increasing powers of the
derivatives of X eq

n

Xn = X eq
n

(
1 − 1

λn→p

(
1 + e− Q

T
)−1 Ẋ eq

n

X eq
n

+ · · ·
)

. (17)
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Therefore, if |Ẋ eq
n /X eq

n | ∼ t−1 � λn→p, that is the rate of the reactions is very high
compared to the inverse cosmological time, Xn = X eq

n , in complete agreement
with the thermodynamical result. Much later, when the temperature significantly
drops the “equilibrium concentration term” X eq

n goes to zero and at the same
time the integral on the right hand side of (16) approaches the finite limit. As a
result the neutron concentration, instead of vanishing, as it would be in a state of
local equilibrium, freeze-out at some value X∗

n = Xn(t → ∞).7 The freeze-out
effectively occurs when the second term in (17) is of the order of the first one,
that is, when the deviations from the equilibrium become significant. Assuming
that this happens before e±-annihilation and after temperature drops below Q 

1.29 MeV (these assumptions can be checked a posteriori) one can put λn→p 

2λnν and neglect exp (−Q/T ) in the obtained expressions. In this case the condition
|Ẋ eq

n /X eq
n | 
 λn→p, defining the freeze-out temperature T∗, takes the form

y2
∗(y∗ + 0.25)2 
 0.18κ1/2, (18)

where y∗ = T∗/Q. In deriving (18) I used the formula (12) for λnν and took into
account the relation between the temperature and cosmological time:

ts = tPl

(
3

32πκ

)1/2 (
TPl

T

)2


 1.39κ−1/2 1

T 2
MeV

, (19)

where κ ≡ π2

30 (gb + 7
8 gf) and gb, gf are the total number of the internal degrees of

freedom, correspondingly, of all relativistic bosons and fermions.
In the case of three types of neutrino (κ 
 3.54)y∗ 
 0.65 and the freeze-

out temperature is T∗ 
 0.84 MeV. The equilibrium neutron concentration at this
moment is X eq

n (T∗) 
 0.18. Of course, this number gives only a very rough idea
about expected freeze-out concentration. One should not forget that at this moment
the deviations from equilibrium are already very big and, in fact, Xn(T∗) exceed
the equilibrium concentration at least twice. The most important thing which could
be learned from this simple estimate is that the freeze-out temperature depends on
the number of light species present in the universe at this time. Since T∗ ∝ κ1/8,
the more light species are present, the bigger is the freeze-out temperature and
one can expect that more neutrons will survive after chemical decoupling from the
protons.8 In turn, later on nearly all these neutrons build 4He; hence one can expect
that if, for instance, in addition to known types of neutrino, there exist the other light
particles, then the abundance of the primordial helium should be higher than in the
case of three neutrinos. This can be easily explained if we take into account that the
rate of the expansion of the universe (H = 1/2t) at the given temperature increases

7 Note that if λ would be decreasing not so fast, such that the integral in the exponent would diverge as
t → ∞, then the overall integral term would also vanish in this limit.

8 If we use for freeze-out the simple criteria t 
 1/λ then we get T∗ ∝ κ1/6, the result which is usually
quoted in the literature.
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if we have extra light particles (see (19)); hence the freeze-out should occur earlier,
when the neutron concentration is higher. For instance, in the extreme case of very
big number of unknown light particles T∗ � Q and the expected concentration
of the survived neutrons should be close to 50%, that is, there is one neutron per
every proton. Later on these neutrons would bind the protons converting nearly
all baryonic matter into 4He. Of course, this would be in obvious conflict with the
observational abundances of the light elements. Therefore, as we will see later,
the primordial nucleosynthesis allows us to put rather strong restrictions on the
number of light species.

Now I calculate the freeze-out concentration more accurately. Since X eq
n → 0

as T → 0, this concentration is given by the integral term in (16) where we have
to take the limit t → ∞. Changing the integration variable from t to y = T/Q
(see (19)) and taking into account that the main contribution to the integral comes
at T > me, where λn→p 
 2λnν and λnν is given by (12), we obtain

X∗
n =

∫ ∞

0

dy

2y2(1 + cosh(1/y))
exp

(
−5.42κ−1/2

∫ y

0
dx(x + 0.25)2(1 + e−1/x )

)
.

(20)

For the case of three neutrinos (κ 
 3.54) we obtain X∗
n 
 0.158. It is in very

good agreement with the results of more elaborated numerical calculations. The
presence of extra light neutrino increases κ by 2 · 
κ f 
 0.58 and respectively
the freeze-out concentration becomes X∗

n 
 0.163. Hence, two extra fermionic
degrees of freedom (one for neutrino and one for antineutrino) lead to the increase
of the freeze-out concentration by 0.5%.

Neutron decay: In the above consideration I have neglected the instability
of the neutron via decay

n → p + e− + ν̄. (21)

It was justified since the lifetime of free neutron τn = 885.7 ± 0.8 s is rather
large compared to the typical cosmological time at the moment of freeze-out
(t∗ ∼ O(1) s). However, later on the two-body reactions (1) and inverse three-body
reaction (21) become unimportant and the only remaining reaction reducing the
amount of the neutrons is the neutron decay. As a result the relative concentration
of the neutrons at t � t∗ is

Xn(t) = X∗
n exp(−t/τn). (22)

Note that at late times one can neglect the degeneracy of the leptons which would
increase the lifetime of the free neutrons; hence we can use the measured in
the laboratory lifetime of the neutron quoted above. As we will see later the
nucleosynthesis, as a result of which nearly all neutrons are captured in the nu-
clei, where they become stable, happens around t ∼ 200 s. It is a rather sub-
stantial fraction of the neutron lifetime and therefore the neutron decay changes
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significantly the amount of the survived neutrons and is important for the final
4He-abundance.

3. DEUTERIUM BOTTLENECK

Complex nuclei are formed as a result of nuclear interactions of the baryons.
For instance, 4He could, in principle, be directly formed in many-body collisions;
2p + 2n → 4He. However, the number densities at the time when this reaction can
take place are too low and its rate is negligible compared to the rate of expansion.
Hence, the light complex nuclei can be produced only in sequence of two-body
reactions. The first step on this way is the deuterium (D) production:

p + n � D + γ. (23)

There is no problem with this step since the rate of this reaction is very high
and the “typical collision time” is, for sure, much smaller than the cosmological
time (at t < 103 s). Hence one can expect that the deuterium should be in the local
chemical equilibrium with nucleons. Let us define the deuterium abundance by
weight as XD ≡ 2nD/nB, where nB is the total number of all baryons (nucleons)
including those ones entering the complex nuclei. In the state of local chemical
equilibrium the relation between XD and the abundances of the free neutron and
protons (appropriately, Xn ≡ nn/nB and X p ≡ n p/nB) can be easily found with
the help of the equilibrium Saha’s formula (see, for instance, Kolbe and Turner
(1993):

XD = 5.67 × 10−14η10T 3/2
MeV exp

(
BD

T

)
X p Xn , (24)

where BD ≡ m p + mn − mD 
 2.23 MeV is the binding energy of the deuterium
and the temperature is expressed in MeV. We have introduced here the normalized
baryon-to-photon ratio

η10 ≡ η/10−10 =
(

nB

nγ

)
/10−10, (25)

which is related to the baryon contribution to the critical energy density �B as

�Bh2
75 
 6.53 × 10−3η10, (26)

where the Hubble constant h75 is normalized on 75 km/s·Mpc. The abundance
of deuterium at the temperatures about its binding energy is still very small. For
instance, for T ∼ 0.5 MeV, we get XD ∼ 2 × 10−13. The reason for that is a
very high entropy (number of photons) per baryon. Even at T � BD there are
still enough highly energetic photons with ε > BD which destroy the deuterium.
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Actually the number of these photons per one nuclei of the deuterium is about

nγ (ε > BD)

nD
∼ B2

DTe−BD/T

nB XD
∼ 1010 1

η10 XD

(
BD

T

)2

e−BD/T . (27)

This number drops below unity at T < 0.06 MeV. Hence one can expect that the
deuterium can be formed in significant amount only when the temperature is low
enough, otherwise it is destroyed by the energetic photons. This also delays the
formation of the other light elements as, for instance, 4He.

The binding energy of the helium-4 (28.3 MeV) is much higher that the bind-
ing energy of the deuterium; hence if helium would be in the statistical equilibrium
with neutrons and protons then one would expect that nearly all free neutrons would
be captured in 4He already at the temperature ∼0.3 MeV. However in reality the
helium abundance is still negligible at this temperature. This is because the rates
of the reactions converting deuterium in more heavy elements is proportional to
the deuterium concentration and is much smaller than the expansion rate until the
deuterium abundance will increase and constitute the substantial fraction of the
baryonic matter. Before that only the protons, neutrons, and deuterium are in
chemical equilibrium with each other. More heavy elements are decoupled and
present in completely negligible amounts in spite of their high binding energies.
This is known as “deuterium bottleneck.” The size of the “bottleneck” which is
proportional to XD should become big enough to allow the neutrons and protons
“to go through” and replenish the helium abundance in accordance with its high
“equilibrium demand.” Let us find when this happens. Using formula (24) we can
express the temperature as a function of XD:

TMeV(XD) 
 0.061

(1 + 2.7 × 10−2 ln(XD/η10))
. (28)

This relation is valid only when the deuterium is in chemical equilibrium with
neutrons and protons, which as we will see is true until the moment when XD

reaches the value 10−2. According to the formula (28) the deuterium abundance
should change from 10−5 to 1 when the temperature drops only in 1.5 times, namely,
from 0.09 MeV to 0.06 MeV (for η10 = 1). Therefore, the deuterium abundance
should increase very abruptly around this time and one can expect that the nuclear
reactions should become fast enough to proceed with formation of light elements.
The main processes converting the deuterium in more heavy elements are (see also
Fig. 1):

1) D + D → 3He + n, 2) D + D → T + p (29)

The cross-sections of these reactions are known from experiments and the results
are usually presented in terms of the effective rates versus temperature.9 In the

9 The appropriate rates are cited in (Esmailzadeh et al. 1991). More recent data can be found on internet.
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Fig. 1.

temperature interval 0.06 ÷ 0.09 MeV these rates change not very much and we
have

〈σv〉DD1 = (1.3 ÷ 2.2) × 10−17 cm3/s, 〈σv〉DD2 = (1.2 ÷ 2) × 10−17 cm3/s.

(30)

Considering the comoving volume containing ND deuterium nuclei we find that
the decrease of their number during the time interval 
t due to the reaction (29)
is equal to


ND = −〈σv〉DDnD ND
t. (31)

Rewriting this equation in terms of the concentration by weight XD ≡ 2ND/NB

we obtain


XD = −1

2
λDD X2

D
t , (32)

where

λDD = (〈σv〉DD1 + (〈σv〉DD2)nB ∼ 1.3 × 105 K (T )T 3
MeVη10 s−1 (33)

and K (T ) is the numerical coefficient which changes from 
1 to 
0.6 when the
temperature drops from 0.09 MeV to 0.06 MeV. It is clear that the substantial
amount of the available deuterium can be converted into helium-3 and tritium
within the cosmological time t only if 
XD 
 (1/2)λDD X2

Dt ∼ XD; hence the
“deuterium bottleneck opens wide” only when the deuterium concentration reaches
the value

X (i)
D 
 1.2 × 10−5

η10TMeV(XD)

 1.5 × 10−4η−1

10 (1 − 7 × 10−2 ln η10). (34)

Deriving this formula I used the relations (19), with κ 
 1.11, and (28); the ob-
tained equation was solved by iterations assuming that 10−1 < η10 < 10.
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After deuterium abundance reaches the value given by (34) everything pro-
ceeds very fast. In fact, if η10 = 1 then according to (28) the equilibrium con-
centration XD should increase from 10−4 to 10−2 when the temperature drops
from 0.08 MeV to 0.07 MeV. This increase of XD means that the reaction rates
converting the deuterium to more heavy elements, which are proportional to X2

D,
at T ∼ 0.07 MeV become 104 times bigger than the rate of the expansion. It is
clear that this system is far from the equilibrium and the deuterium supplied by
pn-reactions “is converted” very fast to more heavy elements. This doesn’t allow
the deuterium concentration to increase to the values bigger than 10−2. The details
of the nonequilibrium processes are described by a complicated system of kinetic
equations which can be solved only numerically. In Fig. 2 the result of numerical
calculations for the time evolution of the element abundances in the universe with
�Bh2

75 
 5 × 10−2 are shown (Burles et al., 1999).
Below I present the calculations which explain the time behavior of these

abundances and derive the formulae for the final freeze-out abundances of light
elements up to 7Be. This includes 4He, deuterium (D), helium-3 (3He), tritium (T),
litium-7 (7Li), and beryllium (7Be). The other light elements as, for instance, 8Li,
8B et cetra are produced in very small amounts and will be ignored.

The most important nuclear reactions involving the light elements are
schematically depicted in Fig. 1, which I recommend to keep in front of the eyes
reading the rest of the paper.

Fig. 2.
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In Fig. 1 every element corresponds its own “reservoir.” All these “reservoirs”
are connected by “one-way-pipes.” Every “pipe” corresponds to an appropriate
nuclear reaction. I write only the initial elements involved in the reaction, since
the outcome can be easily inferred from the picture. The “thickness of the pipe”
through which the element a “escape from the reservoir” as a result of the reaction
ab → cd is proportional to rate of this reaction

Ẋ a/Xa = −A−1
b λab Xb, (35)

where λab = 〈σv〉abnB and Ab is the mass number of the element b; for instance,
A = 4 for 4He and A = 7 for 7Li, 7Be. Of course, the appropriate “pipe” is efficient
only if Ẋ a/Xa > t−1. As we have already seen the “D- and p, n-reservoirs” are in
equilibrium with each other and decoupled from the rest at the temperatures above
0.08 MeV (deuterium bottleneck). However when the temperature drops below
0.08 MeV the “DD-pipes open” and become very efficient in converting an extra
deuterium supply from “np-reservoir” into more heavy element. Finally nearly all
free neutrons disappear entering more heavy elements where they become stable.
After that the concentrations of the elements in the appropriate “reservoirs” freeze-
out and the “final abundances” survive. This is a general picture and now I proceed
with detailed calculations and consider the formation of every element separately.

4. HELIUM-4

As soon as deuterium concentration increases to X (i)
D given by (34) the for-

mation of the other light elements begins. This happens at the temperature (see
(28))

T (i)
MeV 
 0.08(1 + 7 × 10−2 ln η10), (36)

at the moment of time10

t (i)
s 
 206

( κ

1.11

)−1/2
(1 − 0.14 ln η10). (37)

Of course, the nucleosynthesis does not happen instantaneously. Moreover at the
beginning the rate of deuterium production in reaction, pn → Dγ , is substantially
higher that the total rate of the deuterium “annihilation” in reaction (29), namely,

λpn X p Xn

λDD X2
D


 104

(
10−4

XD

)2

, (38)

where I used the experimental value for the ratio λpn/λDD, which is about 10−3 at
TMeV 
 0.07 ÷ 0.08 and put Xn = 1 − X p 
 0.16.

10 Note that T (i) and t (i) depend on the exact value of X (i)
D only logarithmically and therefore not very

sensitive to the exact value of X (i)
D .
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As it follows from (38) before the deuterium concentration reaches its maxi-
mal value XD ∼ 10−2 the deuterium production dominates over deuterium destruc-
tion and the deuterium abundance continues to follow its chemical equilibrium
track given by (24). According to (28) the concentration XD 
 10−2 is reached
very fast after t (i), namely, when the temperature drops from 0.08 MeV to 0.07 MeV
(for η10 = 1), that is, with


t 
 2t (i) 
T

T (i)

 50 s (39)

time delay after t (i). When this concentration is reached the two-body DD-
deuterium destruction become more efficient than the pn-deuterium production
and XD begins to decrease11 (see Fig. 2).

The concentration of the free neutrons during this period strongly decreases
and they go first to the “deuterium reservoir” and then proceed further “through
the pipes” forming heavy elements. For most neutrons the “final destination” is
the “4He-reservoir.”

Why it is so can be understood even without analyzing the rates of the inter-
mediate reactions. Actually, if 4He would be in the equilibrium with the other light
elements it would be dominating at low temperatures because of its high binding
energy (28.3 MeV), which is four times bigger than the binding energies of the
intermediate elements, 3He (7.72 MeV) and T (6.92 MeV). The system which is
away from equilibrium always tends there in a quickest possible way. Therefore,
most of the free neutrons will be captured into 4He-nuclei because its equilibrium
demand is the highest.

The reactions proceed in the following way. First, the deuterium is converted
into 3He and T in reaction (29). After that tritium interacts with deuterium and
produce the helium-4 nuclei:

T + D →4 He + n (40)

As a result two neutrons out of three are captured into the 4He-nuclei and one
comes back into “np-reservoir.”

The 3He-nuclei can interact either with free neutrons and then proceed to
“T-reservoir,”

3He + n → T + p, (41)

or with deuterium going directly to “4He-reservoir”

3He + D → 4He + p. (42)

11 The deuterium photo-destruction can be completely neglected after that. It is clear if we note that
if there would be only photo-desctuction processes alone then the deuterium concentration would
continue to increase.
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The ratio of rates for these reactions is

λ3Hen X3He Xn

λ3HeD X3He XD
∼ 6

Xn

XD
; (43)

hence at the beginning “3HeD-pipe” is inefficient compared to “3Hen-pipe” and
most of 3He-nuclei are converted to tritium. Only when the concentration of the
free neutrons drops below the deuterium concentration (which is always smaller
that 10−2), the rate of the reaction (42) converting 3He directly to 4He becomes
bigger that the rate of the reaction (41). It follows from here that most of the
neutrons will go into 4He-nuclei either along np → D → T → 4He or np →
D → 3He → T → 4He way. Finally, in about 50 ÷ 100 s after the beginning
of nucleosynthesis nearly all neutrons (with the exception of very small fraction
<10−3), end up in 4He-nuclei. Therefore, the final 4He-abundance is completely
determined by the amount of the available free neutrons at the time when DD-
reactions become efficient, that is at t 
 t (i). Because half of the total weight of
4He is due to the protons, its final abundance by weight should be

X f
4He = 2Xn

(
t (i)

) = 2X∗
n exp

(
− t (i)

τn

)
. (44)

Substituting here X∗
n from (20) and t (i) from (37) we obtain:

X f
4He = 2(0.158 + 0.005(Nv − 3)) · exp

(
−206

886

(1 − 0.14 ln η10)

1 + 0.15
1.11 (Nv − 3))1/2

)


 0.25 + 0.012(Nν − 3) + 0.0082 ln η10, (45)

where Nν is the number of massless neutrino species. This result is in very good
agreement with the results of the numerical calculations presented in Fig. 3 (Olive
et al., 2000).

In fact, this agreement can be made even better if one notes that the for-
mation of 4He is not an instantaneous event which happens at t (i). It starts at
t (i) and then continues for, at least, 50 s (see (39)). Most of the neutrons are
trapped at the end. Therefore the time delay reduces the amount of 4He to X4He 

0.25 exp(−50/886) 
 0.236 that is by 1.4%.

As we see from (45) the abundance of 4He depends on the number of massless
species Nν . The presence of extra massless neutrino increases the 4He-abundance
by 1.2%. There are two reasons for this. Two-third out of this increase is due
to the dependence of the freeze-out concentration X∗

n from the number of the
massless species. In fact, more species one has, more fast universe expands at
given temperature and hence the freeze-out of the neutrons occurs earlier, when
their concentration is higher. The remaining one-third has a similar nature. Namely,
for given baryon density the nucleosynthesis happens at appropriate temperature.
This temperature is reached earlier if there are more light species and therefore
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Fig. 3.

more neutrons survive until they will be captured. The dependence of the 4He-
abundance on the number of light species taken together with the results for the
deuterium abundance allows us to put rather strong bounds on the number of
unknown light particles which were relativistic at the time of nucleosynthesis.

The helium abundance also depends on the baryon density (entropy per
baryon) and according to (45) increases by ∼2% (numerical result 
2.5%) if
the density is 10 times higher. The physical origin of this dependence is very clear.
In the universe with bigger concentration of baryons the nucleosynthesis begins
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earlier, at higher temperature (see (36)); hence more neutrons survive till this time
and more Helium-4 is formed.

5. DEUTERIUM

To calculate the time evolution and freeze-out concentration of the deuterium
I will make some assumption which significantly simplify the consideration. The
validity of these assumption can be checked a posteriori.

First of all, I ignore 7Be, 7Li since their abundances as we will see later are
always small compared to the abundances of 3He and T. Second, I will assume that
3He and T abundances always have quasi-equilibrium values, which are determined
by condition that the “total incoming in appropriate reservoir flux should be equal
to the outgoing flux”12 (see Fig. 1). For instance, in the case of 3He it means that
the amount of 3He produced within some time interval in DD and Dp-reactions
should be equal to the amount of 3He destroyed within the same time in 3HeD and
3Hen-reactions. This is well justified because the rate of the reactions in which
3He is destroyed is high enough to take care about “quick adjustment” of 3He-
concentration to the change of deuterium abundance.

The system of reservoirs with pipes, depicted in Fig. 1 is a “self-regulated
system” with small adjustment time. The overall picture after the beginning of the
nucleosynthesis is the following. When deuterium concentration reaches XD 

10−2 the rate of DD-reactions become comparable with the rate of the deuterium
production via pn-interactions (see (43)) and then dominates. The neutrons are
taken from “np-reservoir” and send via “D-reservoir” along “DD- and Dp-pipes”
first to “3He and T-reservoirs” and from there through “3HeD and TD-pipes” to their
final destination, namely, in “4He-reservoir.” Not all of the neutrons taken from “np-
reservoir” reach the “4He-reservoir” in the first try. Some of them “escape” on the
way there. Namely, in “DD1 and TD-pipes” one neutron is released in the reactions
DD → 3Hen, TD → 4Hen, comes back to “np-reservoir” and then participate in the
next try to get “4He-reservoir.” Thus after the beginning of nucleosynthesis there
is a stationary flux of the neutrons from “pn-reservoir” to “4He-reservoir” through
the system of “pipes” via intermediate “D, 3He, and T-reservoirs.” The “widths
of the pipes” (reaction rates) connected to 3He and T-reservoirs depend on the
concentration in the appropriate reservoir. For instance, the width of the “3HeD and
TD-pipes” is proportional, respectively, to 3He and T-concentrations. If the amount
of 3He would increase/decrease compared to its quasi-equilibrium value the size
of “3HeD-pipe” would be quickly adjusted (respectively increases/decreases) to
bring its concentration to the quasi-equilibrium value, which is determined by the
condition of zero total flux.

If the universe would not be expanding then finally all neutrons would go to
“4He-reservoir” and as long as the temperature goes to zero, noting would be left

12 This condition reminds the first Kirchhoff’s rule for the electric currents.
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besides the protons and 4He. However, the expansion plays the role of “water-tap”
for the “pipes.” At the moment when the reaction rates become smaller than the
rate of the expansion the “water-taps” close and the abundances of the elements
in the appropriate reservoirs freeze-out at their quasi-equilibrium values. The final
abundances of 3He and T are determined by deuterium freeze-out concentration
which we have to calculate.

Analyzing the system of kinetic equations one can find that even if 3He and T
have quasi-equilibrium concentrations the neutrons and deuterium concentration
not necessary satisfy the quasi-equilibrium conditions. Therefore, we have to derive
the equations which describe the time dependence of the appropriate abundances
Xn , X D after X D reached the value ∼10−2.

The reaction rate for the elements a, b which is equal to λabnanb/n2
B can be

rewritten in terms of the concentrations by weight as

1

Aa Ab
λab Xa Xb (46)

where Aa , Ab are the mass numbers of the elements a and b. The quasi-equilibrium
condition for 3He takes then the following form:

1

4
λDD1 X2

D + 1

2
λDp XD X p = 1

6
λ3HeD X3He XD + 1

3
λ3Hen X3He Xn. (47)

Similar for tritium we have

1

4
λDD2 X2

D + 1

3
λ3Hen X3He Xn = 1

6
λTD XT XD. (48)

I will assume that these conditions are always satisfied.
The general kinetic equation for the rate of change of free neutrons concentra-

tion can be easily written if we take into account they are produced in the reactions
DD → 3Hen and DT → 4Hen and “destroyed” in the processes pn → Dγ and
3Hen → Tp:

d Xn

dt
= 1

4
λDD1 X2

D + 1

6
λTD XT XD − λpn X p Xn − 1

3
λ3Hen X3He Xn. (49)

Assuming that tritium satisfies quasi-equilibrium condition (48) one can simplify
this equation to

d Xn

dt
= 1

4
λDD X2

D − λpn X p Xn , (50)

where as usual λDD = λDD1 = λDD2.
The appropriate equation for the deuterium is similarly derived by using (47)

and (48):

d XD

dt
= 2λpn X p Xn − λDD X2

D − 2λDp XD X p. (51)
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Expressing time through the temperature via (19) and substituting the numer-
ical values for λDD given by (33), the above equations reduce to

d Xn

dTMeV
= a · K (T )η10

(
R1 Xn − X2

D

)
(52)

and

d XD

dTMeV
= 4a · K (T )η10

(
X2

D + R2 XD − 1

2
R1 Xn

)
, (53)

where a = 0.86 × 105 and the coefficient K (T ) accounts for the temperature de-
pendence of 〈σv〉 for DD-reactions and changes from ∼1 to 0.5 when the temper-
ature drops from 0.09 to 0.04 MeV. In the expressions

R1 ≡ 4X p
λpn

λDD

 (3 ÷ 8) × 10−3, R2 ≡ 2X p

λpD

λDD

 (2.5 ÷ 2.3) × 10−5 (54)

I used the experimental value for the ratio of the appropriate reaction rates; the first
number within the brackets corresponds to the higher temperature when it changes
in the interval TMeV 
 0.09 ÷ 0.04.

The system of equations (52) and (53) has an attractor solution, which can
be easily found if we consider XD as a function Xn (or vise versa) and rewrite the
eqs. (52), (53) as

d XD

d Xn
= 4

(
X2

D + R2 XD − 1
2 R1 Xn

)
(
R1 Xn − X2

D

) .

If XD � Xn then

Xn = 2

R1

(
X2

D + R2 XD
) [

1 − 1

8

XD

Xn
+ O

((
XD

Xn

)2
)]

(55)

satisfies this equation up to the second order terms in XD/Xn . The solution (55)
is a good approximate solution after deuterium concentration reaches the maxi-
mal value of about 10−2 and starts to decrease (see Fig. 2). It is valid until the
moment when the neutron concentration drops to and becomes comparable to
the deuterium concentration. The solution (55) describes the situation when the
deuterium abundance satisfy the quasi-equilibrium condition. One can check that
in this case the time derivative of the deuterium concentration in the l.h.s. of the
equation (53) is small compared to every separate term in the r.h.s. of this equation.
Since R2 � R1 we infer from the eq. (55) that the deuterium and neutron concen-
tration become comparable when the deuterium concentration drops to O(1)R1.
Before this happens (for XD, Xn > O(1)R1) the deuterium concentration can be
expressed through the neutron concentration as

XD 

√

R1 Xn

2
(56)
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Note that according to this formula the maximal possible concentration which deu-
terium can reach is XD 
 10−2 when most the free neutrons are still not captured
by light elements (Xn 
 0.12). This is in complete agreement with naive estimate
we got before comparing of pn and DD-reactions rates. When deuterium follows
its quasi-equilibrium track (56) the neutrons concentration satisfies the equation

d Xn

dTMeV

 1

2
a · K (T )η10 R1 Xn. (57)

In this case the neutrons are the “key element” which determines the quasi-
equilibrium concentrations of all other elements including deuterium. In other
words, the neutrons regulate the “water-taps in the pipes connecting the reservoirs
in Fig. 1.” The equation (57) starts to be applicable at the moment when deuterium
concentration grows to 10−2. At this time most of free neutrons are not yet trapped
by the light elements and Xn 
 0.12. According to (28), which is still applicable at
this time, the deuterium reaches the maximal possible 10−2 when the temperature
drops to

TMeV 
 0.07 + 0.002 ln η10. (58)

After that the neutron concentration satisfies the equation (57), the approximate
solution of which is

Xn(TMeV) 
 0.12 exp

(
1

2
a · K (T )η10 R1(TMeV − 0.07 − 0.002 ln η10)

)
. (59)

As it follows from here, the neutron concentration decreases as the temperature
drops and becomes equal to the deuterium concentration (∼R1) when

T ∗
MeV ∼ 0.07 − 0.02K −1

T ∗ η−1
10 + 0.002 ln η10 (60)

It is clear that this formula is not applicable if η10 < 0.35. In the universe with
very low baryon density (η10 � 1) the neutron concentration never drops below
the deuterium concentration. It freezes-out before. In this case the nucleosynthesis
is over very fast after beginning and neutron concentration freezes-out before the
substantial part of the neutrons is converted into 4He. After that the free neutrons
decay. This explains why in the universe with very low baryon density (for instance,
with η10 
 10−2) the helium abundance is less than 1% (see Fig. 3). When I
was deriving the formula (45) for 4He-abundance I assumed that the reactions
converting the neutrons into 4He are very efficient and able to transfer most of
the available neutrons into more heavy elements. This means that this formula is
valid only for η10 > 0.35. From the observations of the luminous baryonic matter
we know that 1 < η10 < 102 and therefore we concentrate from now on only on
this range of parameter for η10. All the derivations below will be done under this
assumption.
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The neutron concentration drops to Xn ∼ XD ∼ R1 at the temperature T ∗

given by (60). After that the solution (56) is not valid anymore and the system
quickly gets to another attractor which correspond to the quasi-equilibrium solution
of the equation (52), namely,

Xn = 1

R1
X2

D

[
1 + 4

Xn

XD
+ O

((
Xn

XD

)2
)]

(61)

As long as Xn/XD continues to drop one can neglect the deviations from attractor
solution Xn 
 X2

D/R1 and the equation (53) for deuterium takes the following
form

d XD

dTMeV
= 2a · K (T )η10

(
X2

D + 2R2 XD
)

(62)

Now the deuterium becomes the “key element” and determines its own “fate” reg-
ulating simultaneously the quasi-equilibrium concentrations of the other elements
including the neutrons. Since R2 practically doesn’t change in the relevant tem-
perature interval (see (54)) it can be treated as a constant and the equation (62) can
be easily integrated:(

1 + 2R2

XD(T )

)
=

(
1 + 2R2

XD(T ∗)

)
exp

(
4aη10 R2

∫ T ∗

T
K (T )dT

)
, (63)

where the temperature is expressed in MeV. When temperature goes to zero (T →
0) the deuterium concentration doesn’t vanish, instead it freezes-out at X f

D ≡
XD(T → 0). Taking into account that XD(T ∗) ∼ R1 � R2 and estimating the
integral in (63) as ∼K (T ∗)T ∗, where T ∗ is given by (60), we obtain the following
expression for the deuterium freeze-out concentration:

X f
D 
 2R2

(exp(Aη10) − 1)
, (64)

where

A ≡ 2a R2 K (T ∗)T ∗. (65)

The numerical coefficient A only slightly varies with η10. Actually when η10

changes by two decade from 1 to 102 this coefficient increases only twice from
∼0.1 to ∼0.2. The expression (64) fits very well with the results of the numerical
calculations presented in Fig. 3 If we want to get better accuracy using analytical
approach we can do it taking into account the temperature dependence of the reac-
tion rates. The formula (64) is in satisfactory agreement with the numerical results
if we take A = 0.1 = const. At η10 < 1/A ∼ 10 the good approximation for (64)
is

X f
D 
 2R2

Aη10
∼ 4 × 10−4η−1

10 . (66)
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We see that in this range of η10 the deuterium freeze-out concentration decreases
nearly linearly with η10. It is easy to understand. In this case the freeze-out concen-
tration never drops below R2 ∼ 10−5 and as it is clear from the equation (62) DD-
reactions always dominate over Dp-reactions in destroying deuterium. Therefore,
the deuterium concentration freeze out when λDD X f

D ∼ t−1; since λDD ∝ nB ∝ η10

we see that in the leading order X f
D should be inversely proportional to η10 (compare

to (34)).
On the contrary, if η10 > 10 the linear in XD-term in the equation (62) dom-

inates after XD drops below R2 ∼ 10−5 and after that XD ∝ exp(−η10 × function
of T ); hence as it follows from (64) the freeze-out concentration in this limit is

X f
D 
 2R2 exp(−Aη10) (67)

and decays by five order of magnitude from ∼10−5 to ∼10−10 when η10 changes by
only one decade from 10 to 100 (see Fig. 3). In this case the freeze-out concentration
is entirely determined by the reaction Dp → 3Heγ which dominates over DD-
deuterium destruction during the last stage before freeze-out. Hence in a dense
universe nearly all deuterium is very efficiently burned down in this reaction. The
deuterium abundance is very sensitive indicator of the baryon density. This allows
us to put rather strong upper bond on η10 from observations.

6. HELIUM-3 AND TRITIUM

Now we can calculate the freeze-out abundances of the other light elements
using the quasi-equilibrium conditions and assuming that these conditions are
still satisfied at the moment of deuterium freeze-out. First I consider 3He and
assume that X f

D > R2 ∼ 10−5, that is, I consider the case of 1 < η10 < 10. In
this case the deuterium freeze-out is determined by DD-reaction and happens at
the time determined by condition λDD X f

D ∼ t−1
D . The freeze-out time for 3He can

be estimated, requiring that the reaction 3HeD → 4Hen becomes inefficient in
converting the significant amount of 3He into 4He. This occurs when λ3HeD XD ∼
t−1

3He. Since λ3HeD is few times bigger than λDD it is clear that 3He concentration
freezes-out a little bit later than the deuterium concentration. This means that at the
moment of deuterium freeze-out the 3HeD-reaction is still efficient in returning
neutrons back to “np-reservoir”13 ; hence the quasi-equilibrium solution for the
neutrons (61) derived under this assumption is still valid. Substituting Xn = X2

D/R1

in (47) we can express the quasi-equilibrium concentration of 3He through XD:

X3He = 3

2

λDD1 XD + 2λDp X p

λ3HeD + 2(λ3Hen/R1)XD
. (68)

13 The same is true for the tritium since λTD 
 λHe3D. Also note that DD-reaction at this time still con-
tinue to actively participate in refilling the “np-reservoir” in accordance with small quasi-equilibrium
neutron demand.
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After deuterium freezes-out the small leakage from “D to 3He-reservoir” is still
able to keep stationary quasi-equilibrium “flow through 3He-reservoir.” Actually in
the considered case the 3He-concentration is significantly smaller than X f

D and the
deuterium demand needed to compensate the leakage of 3He through “3HeD-pipe”
is not very high. After a short time when the 3HeD-reaction becomes ineffcient
both “DD1 and 3HeD-pipes” close up simultaneously and the 3He-freeze-out con-
centration can be obtained from (68) substituting there X f

D given by (64)

X f
3He ∼ 0.2X f

D + 10−5

1 + 4 × 103 X f
D

. (69)

Here I first normalized all reaction rates on λ3HeD and then used the experimental
values for the obtained ratios. Of course these ratios depend on the temperature.
However, as one can check, they do not change too much, namely, not more than
by factor two in the whole range of the relevant temperatures for the two decade of
baryon density. For the definiteness I took them at T ∼ 0.06 MeV. The obtained
result is in excellent agreement with the results of the numerical calculations pre-
sented in Fig. 3 We see that if X f

D 
 10−3 then the appropriate 3He abundance is
10 times smaller that the deuterium abundance. It is clear from the above expres-
sions that this suppression of 3He-abundance compared to the deuterium abundance
is mostly due to the reactions converting 3He into tritium, which are still very ef-
ficient at the moment of freeze-out because of the rather high concentration of
free neutrons. In more dense universe where the deuterium abundance is smaller
the availability of the free neutrons appropriately reduces. If, for instance, X f

D is
smaller than ∼2.5 × 10−4 (see the denominator in the formula (68) and (69)) then
the reaction 3Hen → Tp does not play any significant role in determining the
final 3He-abundance. This is why we can still use (69) to estimate X f

3He even in
the universe with a relatively high baryon density, where X f

D < 10−5, although the
free neutron concentration can significantly deviate from that given by (61).

From (69) it follows that, if X f
D 
 1.2 × 10−5, then the helium-3 freeze-

out concentration is equal to the deuterium concentration. This is in very good
agreement with the numerical results. In the universe with η10 > 10 the helium-3
is produced in the reaction Dp → 3Heγ and destroyed in the process 3HeD →
4Hen. Irrespective of how big is XD these two competing processes give rise to
the final 3He-abundance, X f

3He 
 Dp/λ3HeD 
 10−5 even in the case when the
deuterium is practically absent. Slight deviation of the numerical results from
predicted here constant 3He-concentration in this limit is due to weak temperature
dependence of the reaction rates.

Similarly, one can find that the tritium quasi-equilibrium concentration is
equal to

XT =
(

3

2

λDD2

λDT
+ 2

λ3Hen

λDT

X3He

R1

)
XD. (70)
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Using the experimental values for the ratio of the reaction rates λDD2/λDT 
 0.01
and λ3Hen/λDT 
 1 we can easily understand the dependence of tritium freeze-out
concentration on η10. The formulae (68) and (70) explain why the 3He-track in
Fig. 2, in distinction from T, doesn’t “repeat” the track of the deuterium, namely,
the 3He-concentration increases monotonically all the time, while T-concentration
first reaches the maximum and then decreases until it gets its freeze-out value.

7. LITIUM-7 AND BERILIUM-7

The quasi-equilibrium concentrations of 7Li and 7Be can be determined from
the equations

1

12
λ4HeT X4He XT + 1

7
λ7Ben X7Be Xn = 1

7
λ7Lip X7Li X p (71)

and
1

12
λ4He3He X4He X3He = 1

7
λ7Ben X7Be Xn , (72)

where I took into account only dominating reactions in which, respectively, 7Li
and 7Be are produced and destroyed. One can check that the other reactions, for
instance, 7LiD → n + 24He and 7BeD → p + 24He for η10 > 1 can be ignored.
It immediately follows from these equations that

X7Li = 7

12

X4He

X p

(
λ4HeT

λ7Lip

) (
XT + λ4He3He

λ4HeT
X3He

)
. (73)

The ratio of λ4HeT/λ7Lip is remarkably constant within rather broad tempera-
ture interval, namely, it increases from ∼2.2 × 10−3 to ∼3 × 10−3 when the
temperature drops three times from 0.09 to 0.03 MeV. In distinction from that
K1(T ) ≡ λ4He3He/λ4HeT varies quite significantly in the same temperature interval:
K1(T ) 
 (5 ÷ 0.6) × 10−2, that is, it drops nearly 10 times when the temperature
drops in three times. Substituting X4He 
 0.25, X p 
 0.75 in (73) we obtain

X7Li 
 (3 ÷ 5) × 10−4(XT + K1(T )X3He). (74)

To get the freeze-out concentration of 7Li we have to substitute in this formula
the appropriate value of XT, K1(T ∗), and X3He at the moment when 7Li-freeze-
out. This moment can be evaluated analyzing the freeze-out condition for 7Li,
7Be-reactions. If XD > 3 × 10−5(1 < η10 < 5) then freeze-out occurs after the
deuterium gets its final abundance. Therefore to estimate X f

7Li in this case one can

substitute the above obtained values for X f
3He and X f

T in (74). If η10 = 1 the first

term there dominates. Taking into account that X f
T ∼ 0.01 × X f

D 
 4 × 10−6 we
get X f

7Li(η10 = 1) 
 10−9. As η10 increases X f
T drops and therefore X f

7Li also de-
creases until the second term in (74) starts to dominate. After that the 7Li abundance
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starts to increase. This increase is due to two reasons. First of all it comes from
the freeze-out temperature dependence of K (T ∗), which can be easily understood.
Namely, the freeze-out temperature for 7Li in this case is mostly determined by
the efficiency of 7Ben-reaction which in turn depends on the neutron concentra-
tion. In more dense universe the deuterium and free neutrons burned down more
efficiently and disappear earlier (at higher temperature) than in the universe with
small baryon density. Therefore the 7Li concentration freezes-out at higher tem-
peratures for which K1 is bigger. Second reason is the following. If η10 > 5 the
7Ben-reaction become inefficient before 3He reaches its final freeze-out concen-
tration. Therefore, to estimate X f

7Li in this case we have to substitute in (74) the
actual value of X3He at the moment when the 7Li-concentration freezes-out, which
is bigger than X f

3He. The numerical calculation show that after passing through

a relatively deep minimum X f
7Li(η10 = 2 ÷ 3) 
 10−10, the litium concentration

comes back to ∼10−9 at η10 
 10. The “trough” in X f
7Li − η10 dependence has

a very simple explanation, namely, it is due to the competition of two reactions.
In the universe with η10 < 2 ÷ 3 most of the litium-7 is produced directly as a
result of 4HeT-interactions. The efficiency of this process decreases with increase
of η10 and as η10 becomes bigger than about 2 ÷ 3, the reaction 7Ben takes over
compared to the direct 7Li-production. In this case most of the litium-7 is produced
via intermediate “7Be-reservoir.”

The berilium-7 is not so important from the observational point of view.
Therefore, to get an idea about its expected concentration we estimate the amount
of 7Be only for 1 < η10 < 5. In this case 7Be freezes-out after deuterium and the
quasi-equilibrium solution (61) for the free neutrons is still valid at this time. Hence
we get

X f
7Be = 7

12

X4He(
X f

D

)2 R1

(
λ3He4He

λ7Ben

)
X f

3He ∼ O(1)10−12 X f
3He(

X f
D

)2 , (75)

where I used the experimental values for the ratios of the appropriate reactions;
here the product of these ratios changes in about five times in the relevant tem-
perature interval. At η10 = 1 we have X f

D ∼ 4 × 10−4, X f
3He ∼ 0.1X f

D and corre-

spondingly X f
7Be ∼ 2.5 × 10−10.

8. CONCLUSIONS

The above derived final abundances of the light elements are in very good
agreement with the results of the numerical calculations reviewed for instance in
Malaney and Mathews (1993), Olive et al. (2000), Sarkar (1996), Schramm and
Turner (1998), and Walker et al. (1991). The analytical derivation is useful because
it allows us to look inside “black box” (computer) and understand an interesting
physics (for instance, attractors behavior etc.) taking place during nucleosynthesis.
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Without referring to the computer codes one can estimate the final abundances of
the light elements and understand their dependences on the main cosmological
parameters. The theoretical calculations of the abundances are in agreement with
observations of Malaney and Mathens (1993), Olive et al. (2000), Sarkar (1996),
Schramm and Turner (1998), and Walker et al. (1991); and the estimates of the
baryon density in the universe from nucleosynthesis come in impressive corre-
spondence with CMB temperature fluctuation measurements. This gives strong
support to the “standard cosmological model.”
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